skip to main content


Search for: All records

Creators/Authors contains: "Ray, Baishakhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep Learning (DL) models to analyze source code have shown immense promise during the past few years. More recently, self-supervised pre-training has gained traction for learning generic code representations valuable for many downstream SE tasks, such as clone and bug detection. While previous work successfully learned from different code abstractions (e.g., token, AST, graph), we argue that it is also essential to factor in how developers code day-to-day for general-purpose representation learning. On the one hand, human developers tend to write repetitive programs referencing existing code snippets from the current codebase or online resources (e.g., Stack Overflow website) rather than implementing functions from scratch; such behaviors result in a vast number of code clones. In contrast, a deviant clone by mistake might trigger malicious program behaviors. Thus, as a proxy to incorporate developers' coding behavior into the pre-training scheme, we propose to include code clones and their deviants. In particular, we propose CONCORD, a self-supervised, contrastive learning strategy to place benign clones closer in the representation space while moving deviants further apart. We show that CONCORD's clone-aware contrastive learning drastically reduces the need for expensive pre-training resources while improving the performance of downstream SE tasks. We also empirically demonstrate that CONCORD can improve existing pre-trained models to learn better representations that consequently become more efficient in both identifying semantically equivalent programs and differentiating buggy from non-buggy code. 
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  2. Self-driving cars and trucks, autonomous vehicles (AVs), should not be accepted by regulatory bodies and the public until they have much higher confidence in their safety and reliability --- which can most practically and convincingly be achieved by testing. But existing testing methods are inadequate for checking the end-to-end behaviors of AV controllers against complex, real-world corner cases involving interactions with multiple independent agents such as pedestrians and human-driven vehicles. While test-driving AVs on streets and highways fails to capture many rare events, existing simulation-based testing methods mainly focus on simple scenarios and do not scale well for complex driving situations that require sophisticated awareness of the surroundings. To address these limitations, we propose a new fuzz testing technique, called AutoFuzz, which can leverage widely-used AV simulators' API grammars to generate semantically and temporally valid complex driving scenarios (sequences of scenes). To efficiently search for traffic violations-inducing scenarios in a large search space, we propose a constrained neural network (NN) evolutionary search method to optimize AutoFuzz. Evaluation of our prototype on one state-of-the-art learning-based controller, two rule-based controllers, and one industrial-grade controller in five scenarios shows that AutoFuzz efficiently finds hundreds of traffic violations in high-fidelity simulation environments. For each scenario, AutoFuzz can find on average 10-39% more unique traffic violations than the best-performing baseline method. Further, fine-tuning the learning-based controller with the traffic violations found by AutoFuzz successfully reduced the traffic violations found in the new version of the AV controller software. 
    more » « less
  3. Automatically locating vulnerable statements in source code is crucial to assure software security and alleviate developers' debugging efforts. This becomes even more important in today's software ecosystem, where vulnerable code can flow easily and unwittingly within and across software repositories like GitHub. Across such millions of lines of code, traditional static and dynamic approaches struggle to scale. Although existing machine-learning-based approaches look promising in such a setting, most work detects vulnerable code at a higher granularity – at the method or file level. Thus, developers still need to inspect a significant amount of code to locate the vulnerable statement(s) that need to be fixed. This paper presents Velvet, a novel ensemble learning approach to locate vulnerable statements. Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph and effectively understand code semantics and vulnerable patterns. To study Velvet's effectiveness, we use an off-the-shelf synthetic dataset and a recently published real-world dataset. In the static analysis setting, where vulnerable functions are not detected in advance, Velvet achieves 4.5× better performance than the baseline static analyzers on the real-world data. For the isolated vulnerability localization task, where we assume the vulnerability of a function is known while the specific vulnerable statement is unknown, we compare Velvet with several neural networks that also attend to local and global context of code. Velvet achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively, outperforming the baseline deep learning models by 5.3-29.0%. 
    more » « less